E-beam Evaporator

Prepared by Yimin Zhou / Henry Lee

м

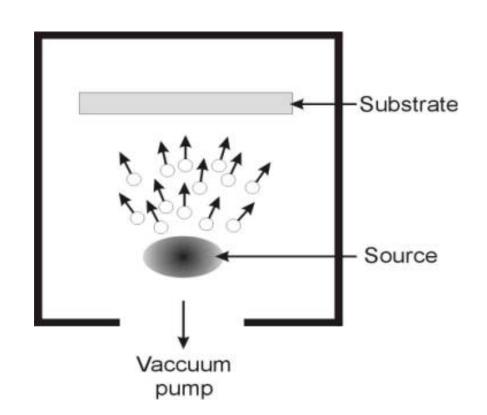
Vacuum

Pressure units

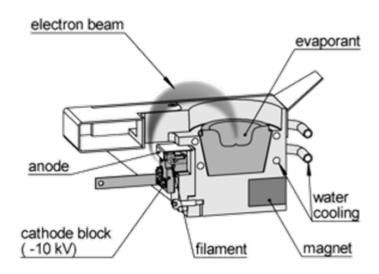
```
atmosphere Torr bar pascals
1 	 760 	 1 	 101x10^3
1 	 Torr \sim 1/760 	 atm \sim 1/1000 	 atm = 1 	 mbar
```

In Chamber

Pumping sequence
 Rough pump atm → 0.01 mbar in <15min
 Cryopump →10 ^{-5/-6} mbar in about 1hr

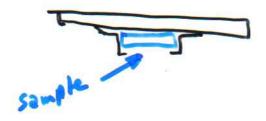

BOC Edwards A306 Evaporator

Technique

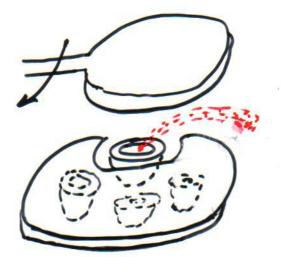

- Vacuum chamber at 10⁻⁵ mbar
- Use a beam of electrons to melt metal (source)
- Vapor deposits onto sample (substrate)

Principle of e-beam evaporator operation

- The electron emitter is designed with 270° beam deflection
- Temperature ~ electron current


Melting, Boiling Points

Metal	Melting point (°C)	Boiling point (°C)
Al	660	2500
Au	1062	2800
Ti	1657	2600
Cr	1890	3200
W	3410	5500


Cost: per 50 gm

Metal	Price (CAD)
Al	\$25
Cr	\$50
Au	\$1300, now?
Pt	\$2600

sample holder

thickness monitor

Shutter

four crucibles

.

Thickness Monitor

Metal deposited →
 Frequency change →

```
Constants (density, acoustic imped. "Z", "Tooling")
```

→ Thickness

→ "Tooling" is a solid angle correction factor calculated with geometric formulae

Notes:

- 1. Evaporator is for approved metals only. Some metals are toxic. Some are reactive and will foul the cryopump resulting in expensive repair.
- 2. Typical pressure during evaporation is $1 \text{ to } 3 \text{ x } 10^{-5}$ mbar range.
- 3. Do not run electron gun if pressure is greater than 6 x 10⁻⁵ mbar (filament will burn out).
- 4. Very gradually/slowly increase electron current. The pressure will increase due to absorbed water vapor, adsorbed air being heated off all the surfaces inside the chamber.
- 5. Do not run for more than 30 minutes at currents greater than 250 mA.
- 6. Each metal requires a special crucible material (graphite, carbon, refractory, intermetallic).
- 7. Crucibles are about 2 cc volume. Fill 0.6 to 0.8 only.

- 8. Typical deposition rate is 0.1 nm/sec
- 9. If sample is put closer to source, evaporation is faster but uniformity is worse for a large sample and sample will get hotter.
- 10. There is no sample cooling so doing a long, hot evaporation will make the sample get hot.
- 11. Evaporated films more than 1 micron take a long time, uses lots of source metal and will have adhesion, stress problems.
- 12. Cross contamination (from other metals) : inspect the lip near the crucible.
- 13. See www.lesker.com and http://www.ee.byu.edu/cleanroom/metal.phtml for tables on metals, evaporation rates, etc.